

Flexible operation of Thermal Power Plants – OEM Perspective and Experiences

Sandeep Chittora, Power Generation Services, Siemens Limited

Restricted © Siemens AG 2017

Table of content

- Technology Development at Steam Power Plants
- Capacity, Demand and Supply
- Market requirements for flexible operation
- Technical background: transient operation
- ST measures to improve transient operation
- ST measures to improve part load operation
- Measures for fast load ramping
- Monitoring systems
- reference

SIEMENS

Ingenuity for life

Technology development of steam parameters Reference examples state-of-the-art efficiency

Page 3 01.12.2017

Market requirements Generation scenario in Germany and India

Installed Generation Capacity India (GW)

Restricted © Siemens AG 2017

Page 4 01.12.2017

Anticipated Scenario in 2022 with 100 GW Solar & 60 GW Wind

Page 5

Sandeep Chittora

Technical background: Transient Operation

Recent Findings at a Highly Cycling Unit (operated outside limits)

Crack depth: 50% wall thickness

Siemens Fleet in India

Modernize existing plant with flexible operation as key element to them

Restricted © Siemens AG 2017Page 701.12.2017

Sandeep Chittora

Market requirements: Changed operational regimes require highly flexible products

atriated @ Sigmana AC 2017

Restricted © Siemens AG 2017

SIEMENS

Ingenuity for life

Power Generation Services

Restricted © Siemens AG 2017 01.12.2017 Page 9

Reduction of Wall Thickness to Improve Start Up & Cycling Capabilities 100

Sandeep Chittora

- Part load may lead to steam temperature changes, especially hot reheat temperature
- Thermal stresses during operation are not considered in standard counting of equivalent operating hours (EOH counter)
- Maintenance needs may not be recognized

Solution

- Evaluation of operational history
- Implementation of a state of the art EOH counter considering load changes

Benefits

- More accurate EOH counting
- Improved outage planning
- Enhanced operational flexibility

IV. Generation

EOH counting also considering load changes

III. Generation

EOH consumption is a function of actual thermal stress

II. Generation

Introduction of three start-up modes with fixed EOH consumption

I. Generation

Maintenance interval defined by operating hours and number of starts

Restricted © Siemens AG 2017

Page 10 01.12.2017

SIEMENS

Ingenuity for life

Grid Services Measures for fast load ramping

Restricted © Siemens AG 2017

Grid Services Increase turbine swallowing capacity to use boiler storage

- a. Remove throttling of control valves
- b. Opening of last main steam valve

Grid Services First Condensate throttling based primary frequency control in India

- a. Enlarge storage volume
- b. Fast condensate control valve
- c. Fast control valves in LP extractions

NTPC Dadri Stage II – Unit #6 490 MW

SIEMENS Ingenuity for life

Grid Services Example for grid code compliance

Restricted © Siemens AG 2017

Further solutions for flexible operation Minimum Load Reduction

Task

To upgrade the plant so that the specified minimum load level can be reduced and to make the plant capable of fast and low-stress load increases on demand in accordance with market requirements.

Solution

- Use of robust state space controller for unit control
- Adaptation, optimization and setting of lower-level controls for new minimum load level
- Adaptation or addition of control sequences, burner and mill scheduler
- Provision of additional instrumentation where necessary

Benefits

- Reduced financial losses during off-peak periods
- Faster response to increased load demands as unit does not need to be shut down
- Avoidance of unnecessary startups and shutdowns

Restricted © Siemens AG 2017

Page 15 01.12.2017

Minimum Load Reduction

The Minimum Load Reduction solution results in savings for minimum load operation through optimization of lower-level controls.

Part Load: Efficiency improvement

Top heater for improved heat rate and lower NOx emisions

- a. Steam from stage bypass connection
- b. Is activated at part load
- c. Final feed water temperature vs. load constant or even increasing
- d. HR improvement of ~ 0.6% @ 50% load

Wai Gao Qiao 3, China 2008, 1040MW

Part Load Optimization: Centralized frequency variable power system

Solution: feed frequency variable turbine from main turbine extractions, supply frequency variable power to motors of fans and pumps.

- House power rate has been reduced from 3.5% to less than 2% (SCR and FGD included)
- Higher reliability compared to conventional electronic frequency convertors

*) Huaibei Shenergy Power Generation Co.,Ltd

Restricted © Siemens AG 2017

Page 17 01.12.2017

Maintenance Flexibility Fatigue Monitoring System

Y-Piece (e.g. before HP turbine)

Online calculation of Boiler Fatigue Components is possible

Both Creep Fatigue and Low cycle fatigue calculated

Depending upon the actual operating mode, residual life of critical components is determined

Restricted © Siemens AG 2017 Page 18 01.12.2017

Sandeep Chittora

Maintenance Flexibility Fatigue Monitoring System

Restricted © Siemens AG 2017

Page 19 01.12.2017

Further I&C solutions for flexible operation Reference case: DCS Retrofit in Neurath Units D and E

- 2 x 600 MW units, lignite fired
- Built 1975
- Originally designed and run as base-load plants

VORWEGGEHEN / SIEMENS

	starting situation	contract	proven (trial run)	further possible potential
Load gradient	5 MW/min	12 MW/min	15 MW/min	20 MW/min
Minimum load (gross)	440 MW	290 MW	270 MW (w/o bypass operation)	250 MW (with risks, e.g. minimum fire interlock)
Primary frequency control (PFC)	18 MW by throttling of inlet valves	18 MW by condensate throttling	45 MW	50 MW
Secondary frequency control (SFC)	n.a.	66 (75) MW	100 MW	110-115 MW
Simultaneous PFC and SFC	n.a.	18 MW 66 (75) MW	18 MW 75 MW	still under investigation

Contractual targets considerably exceeded!

Further I&C solutions for flexible operation Selected references

Frequency & Dispatch Control

Altbach, Germany 420 MW, hard coal: 5% in 30 s up to 100% load (with turbine & condensate throttling + partial deactivation of HP preheaters)

Reliable and efficient start-ups

Franken I, Germany 383MW, gas, built 1973: 20% reduction of start-up costs

Dingzhou, China 600 MW, hard coal: Boiler delay reduced from 180s to 40s for load ramps up to 4%/min (with throttling)

Reduced minimum load

Steag Voerde, Germany 700 MW, hard coal, built 1985: Minimum sustainable load w/o oil support and bypass reduced from 280 (40%) to 140 MW (20 %)

Dadri, India 490 MW 35 MW (~7%) in 20 s (with condensate throttling + HP reserve)

Increased Maximum Load

Callide, Australia 420 MW, hard coal: Max. load +10 % 1,400 h/year max. load through controlled HP bypass deactivation

Restricted © Siemens AG 2017

Contact information

Sandeep Chittora Advisory Expert – Steam Turbine Performance Siemens Limited, India

Phone: +91 124 2842650 Mobile: +91 9971170337

E-mail:

sandeep.chittora@siemens.com

siemens.com

